menu
arrow_back

Data Pipeline: Process Stream Data and Visualize Real Time Geospatial Data

Data Pipeline: Process Stream Data and Visualize Real Time Geospatial Data

40 minutes 7 crédits

GSP439

Google Cloud Self-Paced Labs

Overview

In this lab you will learn how to use Google Dataflow to process real-time streaming data from a real-time real world historical data set, store the results in Google BigQuery, then use Google Data Studio to visualize real-time geospatial data.

Cloud Dataflow is a fully-managed service for transforming and enriching data in stream (real time) and batch (historical) modes via Java and Python APIs with the Apache Beam SDK. Cloud Dataflow provides a serverless architecture that can be used to shard and process very large batch data sets, or high volume live streams of data, in parallel.

Google BigQuery is a RESTful web service that enables interactive analysis of massively large datasets working in conjunction with Google Storage.

The data set that is used provides historic information about internal flights in the United States retrieved from the US Bureau of Transport Statistics website.

Objectives

  • Create a Google Dataflow processing job for streaming data.

  • Generate real-time streaming data using Python.

  • Analyze streaming data in Google BigQuery.

  • Create a real-time geospatial dashboard for streaming data.

Inscrivez-vous sur Qwiklabs pour consulter le reste de cet atelier, et bien plus encore.

  • Obtenez un accès temporaire à Google Cloud Console.
  • Plus de 200 ateliers, du niveau débutant jusqu'au niveau expert.
  • Fractionné pour vous permettre d'apprendre à votre rythme.
Inscrivez-vous pour démarrer cet atelier
Note

—/100

Run the simulation script

Réaliser l'étape

/ 30

Deploy the Google Dataflow Job to Process Stream Data

Réaliser l'étape

/ 20

Inspect the data in BiqQuery

Réaliser l'étape

/ 20

Create a BiqQuery view for Data Studio visualization

Réaliser l'étape

/ 30