menu

Optimize Costs for Google Kubernetes Engine

Advanced 12 Langkah 1 hari 35 Kredit

Earn a skill badge by completing the Optimize Costs for Kubernetes Engine, where you learn about the following tools and techniques to help optimize resource usage and eliminate unnecessary costs on Google Kubernetes Engine (GKE): create and manage a multi tenant cluster, monitor resource usage by namespace, configure cluster and pod autoscaling, configure load balancing, and set up liveness and readiness probes. The videos and labs in this quest explore best practices for running cost-optimized Kubernetes applications on GKE.

A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete this skill badge quest, and the final assessment challenge lab, to receive a skill badge that you can share with your network.

Infrastructure

Prasyarat:

This quest explores intermediate to advanced concepts about Google Kubernetes Engine cluster optimization and assumes the student already knows basic concepts around cluster creation and management. If you are new to Google Kubernetes Engine, it's recommended to first take the Kubernetes in Google Cloud quest.

Quest Outline

Lab

Managing a GKE Multi-tenant Cluster with Namespaces

This lab explores best practices in managing and monitoring a multi-tenant cluster in order to optimize your costs.

Video

Virtual machines in GKE

Lab

Exploring Cost-optimization for GKE Virtual Machines

In this hands-on lab, you’ll learn how to determine and select the the most cost effective machine type for a GKE application. You will also explore the pros and cons of a multi-zonal cluster.

Lab

Understanding and Combining GKE Autoscaling Strategies

In this lab you will explore the benefits of different Google Kubernetes Engine autoscaling strategies, like Horizontal Pod Autoscaling and Vertical Pod Autoscaling for pod-level scaling, and Cluster Autoscaler and Node Auto Provisioning for node-level scaling.

Lab

GKE Workload Optimization

This lab demonstrates how optimization in your cluster's workloads can lead to an overall optimization of your resources and costs. It walks through a few different workload optimization strategies such as container native load balancing, application load testing, readiness and liveness probes, and pod disruption budgets.

Lab

Optimize Costs for Google Kubernetes Engine: Challenge Lab

This lab offers a series of challenges that involve deploying, scaling, and maintaining a cluster application while optimizing resource usage.

Daftar Sekarang

Daftar ke quest ini untuk melacak progres Anda dalam mendapatkan badge.